
MAINTAINING A SPARSE INVERSE IN THE
SIMPLEX ETHOD

BY

JOHN A. Ta4LIN

TECHNICAL REPORT NO. 7

. RATIOr S
ESEARCH

HOUSE

ATION AL TECHNICAL
INFORMATION SERVICE

, ,.. 1 .-:1'

OVEMBE 970

MAINTAINING A SPARSE INVERSE IN THE

SIMPLEX METHOD

by

John A. Tomlin

Technical Report No. 70-16
November 1970

Stanford University
Stanford, California

Research and reproduction of this report was partially supported by Office
of Naval Research, Contract N-0001A-67-A0112-0011; U.S. Atomic Energy Commission,
Contract AT[0A-3]326 PA //18; National Science Foundation Grant GP 9329.

Reproduction in whole or in part is permitted for any purpose of the
United States Government. This document has been approved for public
release and sale; its distribution is unlimited.

i
I

DEPARTMENT OF OPERATIONS RESEARCH

f

1. INTRODUCTION

Sparse matrix methods have been important in practical linear programming

from the very earliest ImplGmentat ions of the revised simplex method.
i
t

These methods have become even more important as the size of problems

presented for solution has continued to grow until, at present, linear j

programs with a few thousand constraints are quite commonplace. Fortun- I

atoly, and not surprisingly, the densities of the constraint matrices

decline with the increase in dimension thus keeping the amount of data
I

storage and arithmetic within possible proportions. »

Techniques for handling sparse matrices are important in two major areas

in linear programming:-

1. Storage and retrieval of the problem data, Thore are several

techniques for storing sparse matrices in use at present (see Smith £13)

and de Buchet C63).

2. Maintaining and applying the basis inverse or substitute inverse.

This paper Is concerned with the second area. Readers will be assumed to

! be familiar with the simplex method using the product form of inverse

(see Dantzlg C7j) and the Gaussian elimination for solving systems of

equations (see Forsythe and Moler ClOQ).

In recent years It has been realized that the sparsity of the inverse repre-

sentation produced by the linear programming inversion routine can be

drastically Improved by using the Gaussian or Elimination form of inverse

(E.F.I.) rather than using the Gauss-Jordan or product form of inverse

(P.I''. I.). This scheme was first advocated by MarUowit/ CHj and subsequently

w

for the special casn of staircase matrices by Dantzig [tQ. Later still

Dctnt/.i^, Harvey, McKnight and Smith £9j experimentally doniünstrated the

superiority of the K.F.I, over the P.F.I, for a number of linear programming

problems and Bray ton, Gustavson and Willoughby [öj were able to prove this

for general sparse matrices.

The elimination form of inverse is now known to be implemented in at least

two commercial linear programming codes; Standard Oil's M5 code p)J and

Scientific Control Systems' UMPIRE code (see Beale C3J). Other codes are

in the course of being modified and may have been already. Some aspects

of the P.F.I, and E.F.I, inversion techniques will be examined in the next

section.

The success of the Gaussian or Elimination form of inverse naturally leads

one to ask whether the resulting triangular factors can be used to advantage

in updating the inverse in the iterations following a re-inversion. The

answer would certainly appear to be yes. Dantzig tßj advocated updating

the triangular factors of the basis for his staircase algorithm since his

preserves the staircase form of the factors. It seems extremely likely

that in this special case ipdating the factors rather than using the ordinary

product form of updating would lead to an increase in efficiency. Bennett

and Green £4j pursued this technique for general sparse matrices and Bartels £lj

and Bartels and Golub (23 have advocated a form of Dantzig's method on the

grounds of numerical stability, without however commenting on the sparsity

implications. Brayton et al ^5) have proposed two other updating techniques

although their concern is not primarily with efficiency in terms of the

simplex method.

The three new proposals will be reviewed and compared in Section 3.together

with their implications for the simplex method. One of these methods is then

•"^^^^^^mmmmm^^mmmmmmmt

selected for some computational experiments, the results of which are presented

in Section 4. Section 5 describes how this method might be incorporated

efficiently into a production code.

t
tttm^i^mmmm

2. TlIK PRODUCT AND ELIMINATION FORMS OF INVERSE

P.F.I.

A popular method of carrying out re-inversion (see Orchard-Hays Cl<()) is

to order the rows (implicitly) and the columns (explicitly) of B and

partition as follows:-

B m

Ai

A B

D E

where A and A are lower triangular. The submatrix B is sometimes

referred to as the "bump" and those vectors with elements in A are "above

the bump", those in A„ "b^low the bump". It seems to be characteristic of

most linear progrims that the submatrices A and particularly A„ are quite

substantial portions of B.

The above partitioned form of B may be factorized thus

B =

Al "i —

A I B

D I I

I

E
J L 2 _

Since A, and A« are triangular the calculation of the product form of

inverse is non-trivial only for the submatrix B. Various "merit" schemes

have been proposed for selecting the order of pivots in B but they will not

be discussed here (see e.g. Tewarson O-Sj).

Using the notation of reference 5 we nay then express B as a product of

elementary transformations

4

or equlvalently

B = T1T2 ••• Tl

B'1 = T'tl •'• T21 TI1

where T is of the form (we assume B is m x m)
k

'Ik

1 i

t
kk

mk

= I + (tk - ek) ek

where e is the k unit m vector, e' its transpose, and

t, = T~ ... T~ T~ b,
k k-1 2 1k

th
where b is the k column of B.

k

Note however that two transformations are made for each column in the "bump".

hence the elements of the T for such columns are zero on the rows corretsponding

to ^_ and in addition a second transformation with a unit pivot and th" k

column of E on the rows of A?iis also made. Note also that

T, = I - t,, (t, - e,) e,' and that it is essentially necessary to keep
k kkkkk

only the vector t, to store T, .and t. and t. , to store T, . (see tsl).
k k» k kk k

th

Ma^^MMMM

E.F. I.

The above partitioning scheme may be used with only a slight modification

in the elimination form of inverse. By rearranging the rows and columns

of the submatricos A , E and D wo may repartition B to give (see Bealo £0)

B s D

A

*

B

/v
where A 9 is now upper triangular. This procedure obviously facilitates

factorization into triangular factors by Gaussian elimination since again

only the factorization of B is non-trivial.

Suppose B is now factorized into LU where L is lower and U is upper triangular.

Q th
Let dt. and u be the k columns of L and U, then defining

K K

Lk = I + (/k " ^ ek

Uk = I + (uk - ek) e'

we may factorize

L s L Lrt ... L
12 m

U = U U , ... U,
m ra-1 1

Hence o-1 „"I „-1 l"1 l"1
B = U, ... U L ... L,

1 mm 1

There is some latitude in the choice of values of diagonal elements of L and U.

The most efficient choice would appear to be setting u to 1 for k in

partitions A,, B and ^.. to 1 in partition A . If this is done the number
X KK £

of transformations (disregarding unit transformations) is exactly the same as

for the P.F.I, since two transformations are calculated only for the columns

in B. 6

The order of choice of pivot elements in B may be decided here, as for

the P.P.I., by merit schemes. These are exhaustively discussed by

Dentzig et al C^).

riMiMM*-.«

:i. METHODS OF UPDATING THE INVEItSM

In this section we briefly roviow, witliout rigorous proof, and compare four

methods of updating' the inverse. Ail except the first assume the elimination

form of inverse discussed in the previous section. With the exception of

method II all are described at greater length by Drayton et al [5j.

Method I C73

This is the standard procedure used in the product form of the simplex method.

Suppose column b of the basis is to be replaced by b . Let B be the original
K K

basis (factorized in either E.F.I, or P.F.I, form) and let D be the new basis.

Let tj., = B-1 b.
'Ai

then B-1 = T,"1, ß"1

where T/ + l = I + (t^^ - e^ e'

Hence if B~ ' T~l • • • T2 Tl

then a"1 - T"^ T"1 ... T^1

Further changes are made by repeating the above process.

Method II ClJ

This is Bartels's version of Dantzig's algorithm (jBj, Suppose we have

B = LU

i.e. B-1 = U"1 L-1 ... L"1
m 1

and we again change b to b . Then L B will be identical to U except

in column k. Permute columns k+l,.,.,m one place to the left and place

column k in position m to give a Hessonberg matrix

= L-1 B Q

(where Q is a permutation matrix).

The elements below the diagonal in columns k to m-1 of II must now be

eliminated by a set of elementary transformations. An important feature of

Bartels' method is that in carrying out the elimination rows may be inter-

changed or permuted to place the maximum of the elements h.. , h, on

the diagonal (Wilkinson's "partial pivoting" strategy D-öJ) to ensure

numerical stability.

The result is a new upper triangular matrix

U = G , P , ... G, P G P. H
m-1 m-1 k+1 k+1 k k

where the P. are either unit matrices or the permutation matrices exchanging

rows Hand /+!, and G. are the elementary

the element below the diagonal in column / .

rows * and /+!, and G. are the elementary transformation matrices eliminating

Hence B"1 = Q Ü"1 G , P , ... G, P, L"1
m-1 m-1 k k

Dantzig fBj and Bennett and Groon (^Q have shown that the "near coramutativity"

of the matrices G. may be used to calculate a now lower triangular matrix L

such that

L"
1
 = G , P , ... G, P, L-1

m-1 m-1 k k

Thus maintaining a true triangular decomposition. This is not however an

essential feature of the method.

Of course the permutation matrices P. , Q need not appear explicitly. All

that is necessary is to record the order of pivoting. The process is

repeated for the next iteration using the new U and (implicitly) the new L.

Method III TSJ

Neither this method nor the next maintain a true triangular decomposition,

however, both require initially the elimination form of Inverse.

Suppose we have B = LU or equivalently

B"
1
 = u"1 ... u"1 L"1 ... L'1

1 mm 1

and again change column b to b and B to B.
K K

The method proceeds as follows:-

Let v, == L" b,
k k

then L B is identical to U except for column k which is now v instead of

V

10

To reduce L D back tu upper trinngulur form the lirsl slop cairle«! nut

is to reduce row k to zero in columns k+l,. .. ,111.

To accomplish this we form a row transformation using the row vector

Wk = (0 0'Wk.k+l V = (0 0'Uk,k+l
Ukm)U

-1

The row transformation is then the elementary matrix

W. = I + e, w'
k k k

and the desired elimination is performed by forming W L B, since the

columns k+l,...,m of L B are identical to U, w" UB (I - e w') U and
K K K

Furthermore the first k w* U is simply the row (0,...,0,u k+1»«"»uk)•

columns of W, are unit vectors and hence the first k columns of L B are
k

unchanged.

Now let tw = Wk L b and form the elementary column transformation

Tk = I + ^k " ek) ek

then clearly forming Tk «£ L~ B reduces column k to the unit vector e

and columns k+l,...,m are unchanged since they have a zero on the pivot row.

(k)
The result then is a new upper triangular matrix, say U ' , obtained from U

th
by replacing the k row and column by the unit vector e .

11

 ■——-—— - -

i.e. U(k) = T-S-^^D
k k

B"1 = U^)"1 T"1 W"1 L"1

k k

(k)
Using product form notation if we lot U. denote the elementary matrix IL

with u set to zero we may re-write B as Kf,

5-1 = UI1---U:1lCl"1- U^"1 I"1 W-1 L-1 ...L-1
1 k-lk+1 m kkm 1

Note that the row transformation W can be represented (if desired) by a

product of two-element elementary column transformations. Also note that

although we have introduced two new transformations that if U was previously

(k)
in product form, U = U ... LL , the new form U is obtained by simply ml * r *

deleting U, and a single element at most from each U ... U for a net
k k+1 m

gain of one transformation in general (unless U happens to be the unit matrix),

To carry the process on one simply treats T W L as the lower triangular
K K

factor as before, although in fact if multiplied out the resulting matrix

would not in general be triangular.

Method IV fSj

This method, which also assumes the elimination form of inverse, proceeds by

inserting matrices T, into the list U ... U, and sometimes deleting a U. .
k ml ^ k

To change b to b we form the vector

K = u^i ••• u"1 L'1 ... L'1 b, k k+1 mm Ik

and replace U by the transformation
K

Tk = I + (tk - V ek

12

Then

ß"1 = U"1 ... U"1, T"1 U"1, ... U"1 L-1 ... L"1

1 k-lkk+1 mm 1

Continuation of this process is rathor more complic ited than in the preceding

methods. Suppose now we have changed b to b and wish to change b to b^ .

There are two cases:-

1. If i £ k then let

t = u7* ... u"1, T"
1
 U"* ... u"1 L'

1
 ... L"

1
 b £+1 k-lkk+1 mm 1

form T. a I + (t^ - e^) e^

and replace Ui by Tt as before.

2. If t > k form

and the transformation T. as above. However, IL is not replaced

and T. is placed directly before T in the inverso transformation

list.

i.e. B"1 = U"1 ... U"^ l"1 T"1 U"^ ... U"1 ... U"1 L-1 ... L"1

1 k+1 / k k+1 1 m 1

Continuing further, if columns k k have been changed and column^ is

to be altered, let k = min (k ... k) and carry out the above procedure.

Having completed our summary of methods for updating a basis inverse or

substitute inverse we must consider their relative merits in the context of

the simplex method in terms of preserving sparsity, work required per

Iteration, and storage and data handling considerations,

13

tu = T^1 UWI ••• U'1 L-1 ... Kl b £ k k+1 m m 1 ,

■■

The great advantage of Method I of course is its simplicity and the minimum

of computational steps and housekeeping involved. The essential step in

changing the basis in the simplex method, given the constraints

Ax = b

and the now column a to enter the basis, is the calculation of the updated
ü

column

OC = IT1 a .

and the ratio test with the updated right-hand side,

ß = B"1 b.

to find the pivot row k from (assuming ^ ^ 0)

■ A 0 = mm ' —
i <*i

**>0

The vector o{ , which we cannot avoid calculating, is precisely the vector

t. used in Method I to update the basis inverse (and the right-hand side).

Methods II to IV all suffer from the disadvantage that they require not only

the vectored for determining the pivot row but also another vector t which
k

is only a partially updated form of a.. Methods II and III can more or less
ü

overcome this disadvantage by putting the vector L a . in temporary storage
J

in the course of calculating o< , at the expense of either using more of the

computer's core storage (thus effectively limiting the number of vectors

which can be saved for multiple pricing) or of using backing store. This

burden is, however, comparatively light compared to the immediate and acute

14

difficulty encountered in Method IV where the vector t to be calculated

for updating purposes cannot in general be known until after the ratio test

operation to determine the pivot row. This implies that t must therefore

be calculated from scratch or obtained by backward transformations on the

vector aC •

Now let us consider the implications of Methods II to IV in terms of work

per iteration expended in updating the basis Inverse and of the necessary

data manipulation. Current packing methods of storing sparse data, parti-

cularly strings of transformations (see £6}, £133) make it rather difficult

to modify an existing product form of L and U. Replacement of U by a T

with more non-zeros in Method IV, for example, necessitates either a whole-

sale shifting of elements of U, maintenance of a second transformation file

to be inter-woven with the first, copying out a complete new basis file or

initial and wasteful leaving of space for such eventualities. A similar,

in fact worse, situation occurs in Method II where on the average half of

the U. transformations must be modified at each iteration, increasing the

number of non-zeros to be stored. Explicit storage of U can only be an

answer for very small problems. Some kind of two-file system, each taking

the new inverse in turn, would appear to be necessary in general, involving

a great deal of read/write activity. Method III on the other hand requires

only the elimination of previously non-zero elements in U - a comparatively

easier task. This point will be returned to in Section 5.

The amount of arithmetic work per iteration would appear to be greatest in

Methods II and III. The bulk of the work in Method III comes from applying

the G| transformations to H to reduce it to triangular form. On the

average we expect to have to deal with m/2 columns on the right-hand side of

the matrix. This is a considerable amount of computation and becomes pro-

15

grossivoly worse as U fills in with each iteration. For Method HI the

main effort is in computing the row vector w'. It will be shown in

Section 5 that this calculation may be performed concurrently with the

backward transformation phase of the next simplex iteration. The most

important point, however, is that U becomes progressively less and less

dense in this method and the calculation progressively easier. There is

admittedly the extra complication in Method III that row transformations

are called for, but this is more of an inconveneience than a problem and

as already pointed out could be circumvented.

Finally we consider the most important point - preservation of sparsity.

In their discussion Brayton et al fSj concluded that Method III was superior

to Method IV in this respect since both a row and column of U are eliminated

in Exchange for a vector w', which only has elements in positions k+l,..,,m,
K

and a transformation vector t which is the incoming column multiplied only

by L . On the other hand if in Method IV some columns with very small

pivot row index k is introduced then virtually every change thereafter will

be of type 2 and we cannot expect much improvement over the ordinary product

form method.

In comparing Methods II and III it again seems almost certain that Method III

will win out. The number of new elements added in the new transformations

would appear to be much the same, but as already mentioned in Method II U

becomes more and more dense while in Method III the density of U declines.

In this connection it should be pointed out that the columns of U most

frequently operated upon are the right-most. These, however, are just those

columns which will be initially the most dense after inversion^since inversion

schemes generally postpone the densest columns until last.

16

In the light of these considerations it appears that Method III is the

most promising for incorporation into the simplex method, both on the

grounds of work per updating and preservation of sparsity. However,

there is certainly some increase in updating work per iteration over the

standard product form (Method I) and a significant improvement in growth

of non-zeros in the basis representation is required to justify its use.

Some experimental results are presented in the next section.

Although we have chosen Method III ai the best for our purposes this is

not to say that the others may not be superior in other circumstances.

Bartels's method (II) is of considerable importance in achieving highly

accurate solutions to small dense problems (see Bartels and Golub (2^)

while Dantzig's original version C83 of Method II for specially structured

matrices is as yet untried.

17

4. COMPUTATIONAL RESULTS

Sumo computational oxperlmotits have been carried out to determine whether

Method III gives a sufficient improvement over Method I In terms of growth

of non-zeros to warrant further Investigation.

To carry out these experiments two linear programming codes were written

and run on the Stanford University IBM 360/67. Both are all-in-core

FORTRAN codes using the elimination form of inverse. Neither employs

multiple pricing. The first code updates the Inverse in standard product

form fashion (Method I), the second is a modified version using Method III

to update the inverse. No attempt has been made to evaluate timings,

dependent as they are on machine used and programming technique. Only the

number of non-zero elements in the inverse representation is considered.

Five problems ranging from small to moderate have been used. These problems

are two of the well-known SHARE standard test problems, 2B and IB, (see Smith

and Orchard-Hays fl'O) and 3 other test problems supplied by Joel Cord of IBM.

The relevant statistics on these problems are given in Table 1.

Only the smallest problem was run to optimallty, the remainder being cut off

after 200, 250, 300 and 350 iterations. To compare the two methods the set

of problems was run on both codes with a fixed inversion frequency - 40

iterations for the SHAKE problems and 50 for the others. The initial com-

parison is arrived at by counting, at intervals of 10 iterations, the number

of new non-zeros added to the Inverse since thp last re-inversion. To

further remove constant factors only non-pivot elements are counted. (Both

methods give a net addition of one pivot element per Iteration in general.)

18

All problems were started from a slack basis and hence tho Iterations up to

the first re-inversion are ignored. The number of new non-pivot non-zero

elements after multiples of 10 iterations from re-inversion is then averaged

for the remainder of the run. These figures are given in Table 2.

The raw data appears in more digestible form in Table 3, where Method I has

been used as a base and the fraction of new elements produced by Method III

is given. The improvement is obviously very satisfactory, with the possible

exception of problem 2. As might be expected the improvement tails off as

the number of iterations increases, particubrly for the smaller, denser

problems.

To obtain a better estimate of the effect of Method III on the simplex algorithm

we should also consider the total number of non-pivot non-zeros in the inverse.

To this end we list the inversion statistics in Table 4 and compute the

fraction of total non-pivot non-zeros produced by Method III, again using

Method I as a base. The inversion statistics do not include the original

all-slack basis and are of some interest in themselves. The pivot choosing

procedure in decomposing B (see Section 2) is essentially algorithm 7 in

Dantzig et al Du •

The modified data for Method III appear in Table 5.

Although the problems are comparatively small and the sample is also small

the results in Table 5 are quite encouraging. It appears that for reasonably

sparse problems with 200-300 constraints a reduction of 20-30% in the number of

non-zeros in the substitute inverse may be expected using Method III, thus

considerably reducing the time spent in forward and backward transformation

in the simplex method. The results for problem 4 show that the reduction

may be dramatic.

19

5. J.Ml'LKMENTATION OF METHOD lil

The results of the pivcodirvg suction sug^fst that further oxporiments using

a modifiod production or comniorcial code would bf worthwhile. It would also

appear that the modifications could be made and the extra updating work per

iteration accomplished at comparatively little cost.

The first essential is clearly to have a code which employs the elimination

form of inverse. Given such a code it should be a simple matter to adjust

the storage and buffering activities such that the T, W, transforms can be
k k

adjoined to the left of the product form L ,.. L, of L
m 1

th
The reduction of the k row and column of U to the unit vector e can

k

probably be accomplished satisfactorily by simply setting indicator bits.

Usually we will have U represented as U U ... U , or rather the packed
12m

vectors u- corresponding to these elementary matrices. The reduction may

then be accomplished by tagging U with a bit to indicate it is to be skipped

over. Furthermore using, say, the blocked index scheme (see Smith Q.3J) for

storing the vectors u* the row index k, if it appears, may be tagged to

indicate the element is zero for ^= k+l,...^. Failing this the u . elements

could be physically replaced by zeros if necessary.

This scheme is of course inefficient in the sense that in an out-of-core

system progressively more and more valueless data must be buffered in and out

of core. On the other hand if the system is already compute bound.rather

than I/O bound this is no restriction, and even if this is not the case the

very frequent re-inversions carried out for large problems should prevent

this inefficiency from reaching really noticeable proportions.

20

mmimm*^^w ■ ^l

Finally let us consider the process of computing w'. For simplicity let

us assume we are carrying out the first iteration after a re-invorsion.

We then have

B = U, ... U L ... L,
1 mm 1

Now the calculation of

•1
wk = (0 0'Uklk+l

Ukm) U

and also the modification of U to U may be carried out in a single pass

from left to right through the transformations U, ... U . To see this
1 m

notice that in computing say

(0f...,0f3k+1,..,,zra) U^
1 for £ > „ .. k j

only the elements z »....z. play any part in the arithmetic since U and

U, are upper triangular. The ©loinonta zt .,...,z are unchanged. We
L t+l m

(k) therefore arrange the computation of w' and the modification of U to U

as follows:-

Initial Step

Create a zero row vector and skip transformations U .., U~ , Tag If" .
X It" X K.

Let £ = k+1.

General Step

For transformation U« , if u » is non-zero extract it and add it in

position / of the row vector, marking the element as now being zero in U« .

Post-multiply the row vector by U/ . Proceed for £= k+l,..,,m.

21

A vory advantageous result of this procrdui-o Is that tho updatinK of tho

ii'vursc can be carried out ccncurrontly with tho backward transformation

of the follow.ng simplex iteration. In calculating the pricing vector for

the next iteration we must compute

7r'= c u00"1 T:1 W"1 L"1
k k

(k)
for some row vector c'. Now tho first k-1 columns of U are identical

with those of U. Tho modification of the remaining columns of U may be

carried out in the same pass through the transformation file as that for

the calculation of TT' and furthermore only one unpacking of the non-zeros

from each u, is necessary. Having obtained w,' the new transformations
I k

T , W may be attached to L and the remainder of the calculation of-if'

can proceed. Looking to the future, this procedure is admirably suited

to parallel processing facilities.

22

6. CONCLUSION

Linear programming inversion routines have now reached a very high level of

sophistication and efficiency, both in terms of speed and sparseness of the

resulting inverse. Although there is doubtless still some room for improve-

ment it seems likely that further improvements in efficiency must be sought

in other areas. The attempt to maintain a sparse inverse is one such area

and the results of Section 4 give considerable grounds for optimism. What

is needed now is full scale experimentation with some of the methods reviewed

here on large problems of 1000 and more constraints to confirm and extend

these results.

23

-

1

ACKNOm.RDGEMENTS

This research was carried out under an IBM Post-Doctoral Fellowship at

Stanford University. The author wishes to thank IBM for their support.

He is also greatly indebted to George B. Dantzig, Gene H. Golub and

Steven Maier for many helpful discussions, and to Roy Harvey, Al Colville

and Joel Cord for supplying data for the computational experiments.

24

REFERENCES

1. Bartels, R.H., "A Numerical Investigation of the Simplex Method",

Computer Science Department, Stanford University,

Technical Report No. CS-104, July 31, 196S.

2. Bartels, R.H. & Golub, G.H., "The Simplex Method of Linear Programming

Using LU Decomposition", Comm.ACM, ^12, pp.266-268 and pp.275-278

(1969).

3. Beale, E.M.L., "Sparseness in Linear Programming", Paper presented to

the Oxford Symposium on Sparse Systems of Linear Equations,

April, 1970.

4. Bennett, J.M. L Green, D.R., "Updating the Inverse or the Triangular

Factors of a Modified Matrix", Basser Computing Department,
■ *

University of Sydney. Technical Report No.42, April, 1966.
I

i
i
; 5. Brayton, R.K., Gustavson, F.G. & Willoughby, R.A., Some Results on

i

i Sparse Matrices", RC-2332, IBM Research Centre, Yorktown Heights,

t
; N.Y., February 14, 1969.

i
i

6. de Buchet, J., "How to Take Into Account the Low Density of Matrices

j to Design a Mathematical Programming Package - Relevant Effects
t

i on Optimization and Inversion Algorithms", Paper presented to

j

the Oxford Symposium on Sparse Systems of Linear Equations,

I April, 1970.
i

i

i 7. Dantzig, G.B., Linear Programming and Extensions, Princeton University

Press, Princeton (1963),

25

8. Dant/.iK, G.n. , "Compact Uasi.s Trlangularizutlun for tho Simplox

Method", pp.125-132 in Recent Advances in Mathematical

Programming (R.L. Graves and P. Wolfe, Eds.), McGraw-Hill,

New York (1963).

9. Dantzig, G.B., Harvey, R.P. , McKnight, R.D., and Smith, S.S.,

"Sparse Matrix Techniques in Two Mathematical Programming

Codes", pp.85-99 in Sparse Matrix Proceedings (R. Willoughby, Ed.),

RA-1, IBM Research Centre, Yorktown Heights, N.Y. (1969).

10. Forsythe, G. and Moler, C.B., Computer Solution of Linear Algebraic

Equations, Prentice-Hall, Englewood Cliffs, N.J. (1967).

11. Markowitz, H.M., "The Elimination Form of Inverse and its Application

to Linear Programming", Man.Sei. 3^ pp.255-269 (1957).

12. Orchard-Hays, W., Advanced Linear Programming Computing Techniques,

McGraw-Hill, New York (1968).

13. Smith, D.M., "Data Logistics for Matrix Inversion", pp.127-138 in

Sparse Matrix Proceedings (R. Willoughby, Ed.), RA-1, IBM

Research Centre, Yorktown Heights, N.Y. (1969).

14. Smith, D.M., and Orchard-Hays, W., "Computational Efficiency in Product

Form LP Codes", pp.211-218 in Recent Advances in Mathematical

Programming (R.L. Graves and P. Wolfe, Eds.), McGraw-Hill,

New York (1963).

15. Tewarson, R.P., "On the Product Form of Inverses of Sparse Matrices",

SIAM Rev. 8, pp.336-342 (1966).

16. Wilkinson, J.H., Rounding Errors in Algebraic Processes,

Prentice-Hall, Englewood Cliffs, N.J. (1963).

26

m a

1
1

!! in <p OJ m h-
n f

H

a £f 50 N O 1 v S t^
■*

"5 1

r-l 1

><
Q H m '-*

1 CO 2 N t 0) !

2 <N M

n

o
iH

00 m m 1
i cs u H M f

1 rH N
'*

CO

CQ
N m 1

i r-t u & O) •
0> t> o r-t

|

03

i ^ H j
0) rt 1 ^ ^■s M

p-l 3
1 3 m •p ! z u

3 ■M 3 ^
) B in ■*-> •H ^ in

0) C ü to +J c 1 H E 3 C CO E
^ 0 in 3 t- 0 3
0 | » -H -P D t-i ^
u (0 0 0 CO 0 O
0. » ei u ^ 6« v-/ (j

«
Ü
•rl

in
•rl
•P

P
M

s
Ü

0

0.

m

III

ao

1-4
m
CO

cn
CM

irj
co
rH

•-I
oo
CM
CD H

H

CD

CM

v

M

CM
m
CM

CO
at
CO

CO
CO
CM
i-l

CM
00
00
H

CM

(O
CM

H*
CO
(0
00

co
(0
00
PH

at

CM

at

co
CO

«o

(O

n

M

CM
CO
CO 8 m

H

CM

co
CM

CM
CO

M
r-

00
in

m

CM

PH

CO

in
CM
rr

CM

M 8 8
CO

CM

CM
H

1

1—(
00

CM

CO
CO
CD

CO

at

00
m 1

H

l-H
1-1
M

«5 CM

ao

m
H
m
r-l

1

H-t
CO

r-l
CD
CO

CM
H -^
-4

CM
o
CO

1

a
o

a
0
u

•a
0

1

s 8 8 ^ s

JJS AUI 90UTS SUOT^BJe^I

CM

0
H

«

w
•H

a)
m
c
•rl

«
o
u
(V

c
0

SS

0)
S5

o

a

L-*.

m n •
(0

•
CO
<0 (0 .6

4

Tf o • n • •
C5
o •

00
m

•

n
(0

m • • • •

N
0)
(0 •

00

• 00 •
c*
00 i

H •
(0

•
lO
0> i

P
ro

b
le

m
 s 8 8 § s

IJSAUI aoujs suof^Bje^i

CO

0)
H

O
£

(1)
S
>,

V
0)

■a
o
u
0.
(0
0

(1)
N
I
C
0 z
I z

0

c
0

•H
■M
Ü
cd
u
fa

m
N

oo r-l

n>
m
in i

n

m

m r-(

CO
00
en
f

oo

3

H
00
oo

E
0)

ja
0
u
a, O

r
i
g
i
n
a
l

B
a
s
i
c

N
o
n
-
Z
e
r
o
s

N
o
n
-
P
i
v
o
t

N
o
n
-
Z
e
r
o

T
r
a
n
s
f
o
r
m
a
t
i
o
n

E
l
e
m
e
n
t
s

c
0

■H

ct
<M B
O t(

O

(D in
XI c
B rt
3 U

0)
rH

(0

tn
(D
so

(!)
>

in
o

■H

Ifl
•H
■(->

cd
■u

c
0

•H
(fl
ll
0)
>
c

k-J.

i ■"
00 1

• • • 1

H !

* 1

1 "* 00

•
n
m • • •

1

m
H

• 8 • • • .7
6

[

CM 00
t

CO •
00
00 a ■

H
n

| • 2 1 o
CO

1 •

<0
i

'S

s s s § s

^jaAuj eouxs suot^Baa^i

3
0)
z
>>

•o
o

I
u

0k

m

2
a
N

I
5
o

g
•H
■P
Ü

2

"' ·--- . ,.,._ - -·-""-- ... _,

DOCUMENT CONTROL DATA • R&D
(S-rlt)' c l .. :jlleetl un ol IItie. food~< el .,.,.,,.,, .n4 lnde•m,f -noletfoot ,.,., .,. - !•Nd_,,,.piNt le ,,~

t O"l l GINA TIN 0 AC TIVITY (C•-•• • utltd t) J • · 1\IC .. O"T e lt<: U"I TV C: L.A •• I .. ICA TtON

D t. of 0 r a t i ons Re ea r ch
t a1 ord un · er i ty Stanford, Calif. Zll CIIIIIOU.-

I . lti!.,OitT TITLI

Maintaining Sparse Inverse in the Simplex Hethod

4 . OCSCittP TIVI NOTIES (Type ol _, .n4 11tc ... 1 .. •reo)

TECHNIC: L REPORT -I · AUTHOit(.S) (L.Ael, • • ll rwt n-•· fnUiel) '

Tomlin, J hn A. .
1. ltCPO ItT DAn: ?e. 'I'OTAL. NO. 0" .-Aat:• I' o. o

November 1970 31 16
Ia. C ONT .. ACT O" G"ANT NO . te. Oltla.,.AT0" '1 .. IE .. OIOIT NUM81[1t(.l)

N00014-67-A-Oll --001 1
...... O..I&C:T NO . 70-16

NR-047-064
c . ••. ~TH~J .. OIOIT NO(S) (An,. ,_ .. ,.. ... ,_,.,

~ .

tl.

tO. A VA IL AIILI TY/L.I NITATI ON HOTICCS

Thi d ument has been approved for public release and sale; its dist ribution
is u . limit d.

11 . IUPPL.INCNTAitY NOTCS tl. I~IOftiNG MILITAitY ACTIVITY

Logistics & Ha thematical Statistics Branch
Math. Sciences Div)~ · on. ON'R.

Washington, D. c. 20%0 - -., AeST ~ CT

Thia pap c.> reviews and compares some new methods which have recently been
proposed f or updating the inverse in the simplex "methoci . All of thes e .
new method ass ume an elimination form of inverse, which has lately been
shown to b uperior to the old product form. Some computati.onal experi-
ments com ar-tng what appears to be the most promi s i ng of these new methods
wi th he star. J~rd product form method are described and the results appear
encouraging. s.,me suggestions for implementation of this method in a
large-sc 1 proa~ction LP code a re also given.

DO F Rill
1 IAN a.c 1473 UNCLASSIFIED

~

Security Cla~~;sifi~a~Oft"--·--

...

.J

------~~~~~~·~·~~~~~lu~~f~~~nY-~------------

•~S~ec~ari~i~~C~l~a:s:ai~fi~c:a~ti~on~-------------------------,--~~~---~~FF~ ~· LINK A I..IN K D LINK C '1.. 1--...;;.;;.,o;;.;..;.;..__ + - -
KEY WOitDI ftOLI! WT ROL.It ~- 1\0I..It WT

~--------------------~-----------t~~~-;~;.._

Siaplex Method

Eli.tnation Form of the Inverse (E.F.I.)

Product Form of the Inverse (P.F.I.)

I
INITIIVCTIONI

L OltiGIIIA11NO AcnVITY: Eat• the e and
el tile OMirect•, aubcOillract•, peatee, Dep.t-lll of De­
,._ -=tt.br • other -.aftintien (cotpOrale author) ,_...
2& ltDOitT I&ICURTY CLASSIFICATION: Enter tbe •••
.U ___.., claMlflcaUoa of the report. Indicate whether
~ Dele" la lnc:ludK Merkt .. la to be in .:~
- 'llltll~pp...,Sate a.curltr r .. lllatlona.

2L OllOUP: Autoa~Mlc downpadlftl le epeclfled la DoD Dl­
..u .. 1200. 10 aad Ar1Ded Porcee lll&haatrlal Manual. E••
t .. poap D-.ber. Aleo, wlwn applicable, ahow that optloMI
...._. laOYe been used for Group 3 end Group 4 .. author-
18M.

J. ltiPORT TrrLE: Enter the C:OIIIPlete npol't title ln all
~ 1ettan. Tltlea lA all c:aeea aboWd be IIDCl•elflod.
• a -·"'&fill Ulle ca-t be Mloc:ted wlthoul c:l•alflc•
tlo.,, title cleaalflc:ation lA all capbale ln p .. lltheela
lPPI*-talr foUowl .. tlao title.

4. DDCIUPTIVE NOTES: If epproprlMe, enter the t,.,. of
......._ ••• lllterlm, proc-reea, eua~mer:r, annual, or final.
Glw tile lllclual•• detea when e apec:lflc: reportlna period la
~ ...
5. AvrHOR(I): Enter the aame(e) of authol(a) •• •ho- on
• lD tlae report. Enter laat name, flret name, llliddle lnltlal.
II e:Ubar:r, allow renlt and brencb of aenlc:e. The - of
tlae pd.clpal 11utbor &• an abeolute Gllninlu• requl-nt.

6. REPORT DAT!:.: Enter t .. date of the report aa day,
-- :rew. or -ntb. :rea.. If -• t han one date ~ppean
on tlae rtpe1t, uae date of publlcatloa.

7a. 'IOTAL NUMBER OP PAGES: The total pep c:oullt
alaould follow no•al peel nation procedure e. l. • · , ent• tbe
....,er of p ... • c:olltallllna lnlonnatlon.

76. lftiiiBER OF REFERENCES: Enter the total nu .. er of
ref•eace• cited 1n the report.

Ia. CONTRACT OR GRANT NUMBER: If appropriate, enter
... eppllc:able aumbft' of the contract or crant under which
tlae repent wea written.

.. , 11:, • lei. PROJECT NUMBER: Enter the approprl.te
OIIUtSil' dep.ta~ent idenUflc:eUon. wch aa proj.ct IIIUiber,
aullp10joc:t ••er, eyatem numbft'a, taek number, etc:.

ta. ORIGIHATOR'S REPORT NUIIBER(S): Enter tbe offt·
dal report number by whlc:b the doc:u.aat will be lclelltlflod
aad -lltrollad by the orlt:lnatlllc .ctl•lt:r. Tbla DUIIIber
M unique to thle report.

96. OTHER REPORT NUMBER(S): If the report hM been
eaal.-d _,other report numbere (either by tlte Ollllnator or.,. tfte aponHr), alao enter thle nwaber(a).

10. AVAILABILITY/LIMITATION NOTICES: Enter ear lU.
ltau- aa further dl .. emlnetlon of the report, otber than tlaoae

a.poaec~ b:r aec:arlt:r claaeUlcetlon, us i ng utandara etetamente
HCbDO:

(l)

(2)

(3)

(4)

"~lfled raqueetere !JUl y obtain coplea ol thla
report fro• DDC"

"Forelp ennouncfl!lc nt and diaaemtnaUon of thla
report b:r DDC le not author .r:ed. "

"U. S. Govemment acenciee m•y obta tn copl ue o f
thla report duectl y fron1 DOC. O th er quAH!led l>DC
uaen ahall requeet t lvouch

--------------------------------------- ·"
"U. S. mUUer:r a1enc le s may obt•in coptee of thla
report dlrec:tl:r from DDC Other qualified uaere
ahall r~ueat through .. ------- - ---·- ------

{5) "All dletrlbutton or this repo l Ia controlled. Qual·
!fled DOC ueera slu•ll requ e l •tuoup)1 .. ------ - -----· -- ---

If tbe report he ll been (rnl "h to th., ffl c. l! of ttchnlc al I
'-ric:ea, Department of Comrn~r .:. , for oll l o the publ ic, lndl- .
c.te tlala f.ct end enter the •~·e, k •1own.

lL SUPPLEMENTARY NOT F. Use Cnr d ti on ll.l exptan•
tc.y notea.

12. SPONSORING MlLITAH ' c n:vn·· : E nt .. r th u.am" of
tlae dtpert-ntal projec t o!llce or l nbor .. tc.l')' aponso rina (p.toyo
lrtf for) the reMarcb and d velopment. !nc lud., addres a.

13. AMTRACT: Enter or. llba t rnct giving a brief and (actual
euaa-r:r of. the doc ument indi cative of thl' repo1t , even thouch
it •e:r alao appear elsewhere in the body r the technJce l re·
port. U eddltioa.t sp•ce ia required, a ont nuatlon lheet eha H
be attached.

It ie hiply deelrable tha t t11e abetr&c t o f c U fl ified reportn
be unc:laeelfled. Each para graph • f th!! a bstrac t aha ll eod with
an lndlc:atloa of the mili ta ry secunt ci saiflca tion of the in ·
f-tiaa ln the parogToph, teprescnterl as (T.~) . (S). (' ") , or (U) .

There ie no Umltation on the 1 ngtl. of the abs ra c t. How·
enr, the auueated length is fr rn 150 t., 225 wo 1ds .

14. KEY WORDS: Key words ar~ techn .a ly lleaningfu l te rms
or ahort phreaee that cha racterh:e 1\ rep •t and mav be U!!ed as
lnde:a aatriee for cataloging tht- report . Ke y rd; 1 l•at be
Mloc:tod ao thet no aecuri ty cla,.siflca U '" i 1< re uired. Tt!en ti ·
flera, auch ae equipment modtd deslv;-10 i:J<m , trade na me, millt~ ry
project code n•IJ!e, geogr"phtc locati on, m" y be used & II key
worda but will be followed by an indica 010 of technica l con­
ta:at. The eeai111ment of links. rale , and weight• ls optional.

~~~~--~~~~~~~~--------------2---------------- · DD .~~~. 1473 <BACK) 
-J' 

~ ........ 'f~--------o#l. 


